PERIODIC DISLOCATION MOTION IN A RELAXING MEDIUM

V. I. Belyavskii and B. M. Darinskii

We consider periodic helical dislocation motion in a para-elastic medium under variable
external stresses. The para-elastic properties of the medium are determined by the short-
range-order parameters between atoms of the different components of the alloy. The solu-
tion of the nonlinear dislocation equation of motion is obtained in four different regions of the
amplitude-frequency space. The conditions are indicated under which dislocation motion is
viscous and is in the nature of breakaway from the polarization atmosphere.

1. Inthe displacements of undivided helical dislocation in an isotropic elastic medium, internal fric-
tion oceurs in connection with para-elastic relaxation [1]. The dislocation motion is defined by the equation
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Here fj are the forces from the side of the external stresses Oy acting on a straight line disloca-
tion of unit length along the direction s; with Burgers vector by; the f;(e) are the linear tensile strengths of
a dislocation segment of length L defined by the displacement &; from the equilibrium position in the ab~
sence of external stresses. The quasielastic coefficient w is defined by the equation
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in which p is the shear modulus and r; ~b is the radius of the dislocation kernel. The interaction hetween
the dislocation and the polarization atmosphere f OF is determined from the equation for the energy of that
interaction
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where crik(“) is the stress field created by the atmosphere; uik(d) is the dislocation deformation. Integra-
tion in (1.3) is over a plane perpendicular to the line of dislocation excluding a region of radius r, of the
dislocation kernel. Inthe case of helical dislocation along the third axis, the nonzero components of ujj (%)
are
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If we consider a crystal with polarization atmospheres about the dislocation as a para-elastic medium,
the stress field created by the atmosphere in the approximation for a standard linear body can be written
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Here AAjipy, is the tensor defect of the modules of the medium,and 7
is the relaxation time. For example, for alloys with replacement on a body-
centered cubic lattice basis, the expansion for AAjk]y, in the case of short-
range-order relaxation has the following form:
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p The quantity Au is defined by the parameters of the interatomic interac-
tion in the alloy.

g ! Ov Let £(t) denote the dislocation displacement along the x axis under the
action of external forces. Then, using (1.4) and (1.5) and integrating in (1.3)
with respect to the spatial coordinates, we obtain an expression for the energy
of the interaction between the dislocation and the atmosphere which depends
on the previous history of the dislocation motion:
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where A£° is the derivative of Af with respect to t'. If we substitute in (1.1) explicit expressions for the
forces, we obtain an integral equation for the dislocation motion:

B e 1+ o A ok = ab (1.8)
(B = Apb* / 6m)

In what follows we consider periodic solutions of Eq. (1.8) for the case of harmonic external stresses
o =0, sin wt.

Figure 1 shows the region of the amplitude-frequency space inside which we shall find below various
periodic dislocation motions and obtain expressions for the internal friction, using simplifications of
Eq. (1.8).

2. For small dislocation displacements £ < ry, instead of (1.8) we obtain a linear integral equation:
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Thus, in this case relaxation is independent of the amplitude of the internal friction:

Q= NLvp3 OT1
T 2wt (L B/ ure®) 1+ o

(2.2)

Here N is the dislocation number in unit volume,and the relaxation time is
=1+ B/ury? (2.3)

Equations (2.2) and (2.3) show that the height of the relaxation peak and the relaxation time depend
on the degree of binding of the dislocation atmosphere. For weakly bound atmospheres (8/% ry? < 1) the
relaxation time is 74~ 7, and the height of the peak increases as the degree of binding of the dislocation
atmosphere increases. In the case of strong hinding (B/'yc.roz > 1) the height of the peak is determined only
by the density of the moving dislocations, and the relaxation time 74 can be much greater than the relaxation

time 7 of the medium.

3. We consider the case of oscillations of the dislocation segment with large amplitude £,>r; and
low frequency w < ry/T&, (region 2 in Fig. 1). Inthese conditions the polarization cloud moves with the dis-
locations, which corresponds to visco-elastic dislocation motion. Equation (1.8) takes the form
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P xE + g = ob (4 = Pt/ 1) (3.1)
A 8
ﬁ £ where 7 is the viscosity. Internal friction is relaxational in nature:
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Fig. 2 Here T, is the relaxation time.

From the condition w < r;/7§, and the condition that the relaxa-
£ \ tion maximum is reached, wr, =1, it follows that the relaxation maxi-
o mum (3.2) can be reached when the atmosphere is strongly bound

Al/ &y < B/xy).

N =S~ Bl & Wenote that analysis of the experimental results on Zener re-
[ === & \J& laxation has to take into account the dislocation contribution to internal
/,V friction. In particular, this is because internal friction is dependent
/ on the orientation in multicrystalline solid replacement solutions,
\J since the dependences on orientation of the Zener and dislocation re-
laxation are significantly different.

Fig. 3
4. We consider the motion of the dislocation segment with fre-
quency w < 1/7 and ry < §; (regions 2, 3 in Fig. 1). To a good approx-
imation we can assume that the force on the dislocation moving with instantaneous velocity £ * () coincides
with the force on a dislocation moving uniformly with the same velocity. If we substitute Af =£°¢' in Eq.
(1.8) and integrate, we have

f@OE) = — B/ 18 lci [rg/ 18) cos (rg/ k) + si(ry/ 7E) sin (ry / 1E")] (4.1)
The curve f(a) (¢') leaves the origin and has a maximum ~8/5r, for £, ~4r,/T.
Investigation of the asymptotic behavior of (4.1) shows that
f@ ~8 for ELro/T, 9 ~InE/E for E>r,/v

which agrees with the results of [2]. Below it is convenient to use the equation for the force f(“) (§") ob-
tained in [2] because of its simplicity compared with (4.1).

The dislocation equation of motion has the form
B Ev\2
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We have not succeeded in solving this equation exactly. Hence we first consider the case of weak
interactions between the dislocation and the atmosphere. In the linear approximation we obtain the following
solution of Eq. (4.2) in terms of the small nondimensional parameter 8/ué 02 <« 1:

E(t) =Esinot — S S l 1+ (—9:751)2 cos? mt‘ 4.3)
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From (4.3) we determine the internal friction:
- 8NLB S wtlo \2\ %
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Equation (4.4) for the internal friction as a function of the frequency has a maximum at which the fre-
quency is

Om = I'ezy [ TE, {4.5)

and it diminishes as the amplitude of the oscillations increases. In (4.5) the dimensionless coefficient
z4 ~ 1 is the nonzero solution of the equation

2—(I4+2+ VIt Yl +VIF2)[=0 {4.6)
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The maximum value of the internal friction
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decreases as the amplitude of the oscillations increases and depends weakly on the temperature of the
specimen,

We note that the above results agree qualitatively with the numerical computations of [3].

In the case when the atmosphere is strongly bound to the dislocation (B/nt 02 > 1), the para-elastic be-
havior of the medium strongly affects the motion of the dislocation segment. For sufficiently large ampli-
tude o and frequency w periodic motion of the dislocation segment occurs with breakaway from the moving
atmosphere of the elastic polarization of the medium. To compute the internal friction and the conditions
under which such a phenomenon can arise, we use a simple approximation for the relation between the force
and the velocity:

@) g N, |E|<ro/st=En (4.8)
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The viscosity 71, as in (3.1), is defined by the equation 7 = B'r/roz. The boundary value of the velocity
&, defining the interval in which f(“)(’g’ 9 is linear, is found from the condition that the force is given by
(4.8), the velocity at the maximum force being defined by (4.1).

The moment of breakaway of the dislocation from the atmosphere is determined from the condition
that the force on the dislocation from the side of the external stresses and tension exceeds the maximum
binding force of the atmosphere; we have

‘ob = %E + fm (Fm = B/ 5r) (4.9)

To determine the moment of breakaway t; we consider the motion of dislocation in accordance with
Fig. 2, which shows the relation between the displacement & and the force f on the dislocation when there
is a single breakaway from the movingatmosphere. At time t; the dislocation breaks away from the point
A and reaches a position defined by the quasielastic tension B. The coordinates of the point B in the f%
plane are
fz = oobsin oty

4.10
Eg = g, bul sin ol ( )

After time T the dislocation moving near the point B surrounds the polarization atmosphere,and the
subsequent motion of the dislocation is again limited by the relaxation properties of the polarization atmo-
sphere and is subject to condition (4.2).

Ignoring an interval of time ~ 7, which is small in comparison with the time for the dislocation to
move to the next breakaway, we find an equation for £(t) from the solution of (1.1) with the approximation
(4.8):

E(t) = Ce—t{™ 1—-‘}-%%'5? (sin ot — T, cos ) (4.11)
where C is determined from the initial condition (4.10):

Cetol ™ = ——1—%:? (cos oty - 0T, sin wty) 4.12)
It is easy to verify from (4.11) and (4.12) that £°(ty) =0. This corresponds to the fact that after dis-
placement into a new position the dislocation begins to move again with zero velocity and the tangent to the
curve BC at B is parallel to the f axis. If we equate the force from the side of the external stresses and
the linear tension on the dislocation at the maximum force f,,, we obtain the condition for breakaway at time
ty+ m/w in the following form:
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The solution of Eq. (4.13) is
tg= 20 larctgf
o= {1+ i) for+ [ (1 - i) @14
v=14 12, y=1-+Fe™/e%)
From the condition that the expression under the square root sign is positive, we find the lower

boundary for the amplitude of the external stresses o4 for which such oscillations of the dislocation seg-
ment are possible:

_em (4.15)

The quantity o« is a function of the frequency. At low frequencies wt,< 1the amplitude is o, ~
0 /W7y, while in the case of high frequencies not exceeding 1/7, itis o4 > 0y/2.

The upper boundary of the stresses under which motion with a single breakaway (in a half-period) of
the dislocation from the atmosphere occurs is determined from the condition that the sum of the elastic
and tension forces only exceeds fy, once in a half-period. Otherwise, as the stress increases,the disloca~
tion breaks away a second time from the atmosphere. The internal friction is defined as

Q= ‘1N:';52P [_”‘%‘}. + 22,0,2.9 — —%%‘— (sin fy -+ ©T, 008 mto)] (4.186)

If the external stresses ¢, < o,, then

Q= 2 NLbphavs
- v

4.17)

As o, passes through the point oy, the internal friction changes discontinuously by an amount
b 2‘7 Dns2 :
AQ = WELETL (4 — 2/ wy) (4.18)

We see from this that if @ < 1/7,, then AQ™! < 0, while for w > 1/ T3 the discontinuity is positive,
and as the frequency increases, AQ~! — 16 N Lb? pwn-i. Thus, for sufficiently large frequencies the internal
friction is determined by the force of breakaway from the moving polarization atmosphere.

5. We consider high-frequency dislocation oscillations in region 4 of Fig. 1. If we expand the exponen-
tial function in the integrand of (1.8) in a series of powers of 1/wT and retain only two terms of the expan-
sion, we obtain
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The second term in (5.1) is the force on the dislocation segment from the side of the stationary polari-
zation cloud established as a result of the periodic motion of the dislocation. The last term, which is much
less than the second, is the viscous force on the moving dislocation.

In the case of a weak atmosphere the viscous component plays a fundamental role in the internal

friction. If we consider it as a small perturbation, we can determine the addition to the zero~order approxi-
mation:

o . B& & [sin z —sin (x — x)] 2’dz’
G = 12mety S Zo* [sin x — sin (x — ") [* + re? {5.2)
9
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We have ignored the second term in (5.1) since in the approximation it makes no contribution to the
dislocation energy. Using (5.2), we find the oscillation energy absorbed in a period and the internal friction:

_, BuNLBPB . o
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If the binding between the dislocation and the atmosphere is important, the standard distribution of
the polarization atmosphere has a significant effect on the nature of the dislocation motion; since the dis-
location for a relatively large part of the time moves near the extreme positions, the density of the atmo-
sphere there is maximal. The situation may be complicated when the periodic dislocation motion in the
potential field of a distributed atmosphere can breakaway from the extreme positions where the force main-
taining the dislocation of the polarization atmosphere is maximal.

We consider the particular case of motion in which the dislocation breaking away from the cloud at
one of the extreme positions rapidly moves to the opposite extreme. The conditions for the existence of
such dislocation oscillations are found approximately assuming that the polarization atmosphere is formed
by the moving dislocation, which for the basic part of its time is found in the neighborhood of the extreme
positions. Then Eq. (5.1) can be written

B Btk Bo—E
b=ty [(E,o+ TRt Bo— LR ,02] (6-4)

The contour of the force field acting on the dislocation and the hysteresis loop formed because the
force f depends on the displacement £ of the dislocation for high-frequency oscillations are shown in Fig. 3.
The level of the external stresses at which dislocation motion with breakaway is possible is determined by
the relation between the extreme values f; and f, of f(£):

fo <A < Ood (5.5)
Noting that &, & &,~1), & ~ £,— (8/2n)1/2, after computing f; and f,,(5.5) can be put in the form
B/ 86 << ap <P/ 82+ B2 (5.6)

For stresses o, less than oy =/8b? the hysteresis loop does not occur. When the level oy is ex-
ceeded, all the dislocation loops, except the smallest, which collapse under stresses ~ o, at a distance
~ ry, move with breakaway at the points +£,. If then 0; increases, the longest dislocation segments cease
to move with a breakaway since for them the polarization atmosphere becomes more homogeneous and the
force field becomes smoother. Hence the internal friction must decrease as ¢ increases, the rate of de-
crease being determined by the distribution of the dislocation segments in length.
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