
PERIODIC DISLOCATION MOTION IN A RELAXING MEDIUM 
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We cons ider  per iodic  hel ical  dis locat ion motion in a p a r a - e l a s t i c  medium under va r i ab l e  
externa l  s t r e s s e s .  The  p a r a - e l a s t i c  p r o p e r t i e s  of the medium are  de te rmined  by the sho r t -  
r ange -o rde r  p a r a m e t e r s  between a toms  of the different  components  of the alloy, The solu-  
t ion of the nonl inear  dis locat ion equation of motion is obtained in four  different  regions  of  the 
ampl i tude- f requency  space.  The conditions a re  indicated under  which dis locat ion motion is  
v i scous  and is in the nature  of b reakaway  f r o m  the po la r iza t ion  a tmosphere .  

1. In the  d i sp lacemen t s  of undivided hel ical  dis locat ion in an i so t rop ic  e las t i c  medium,  internal  f r i c -  
t ion occurs  in connection with p a r a - e t a s t i c  re laxa t ion  [1]. The dislocat ion motion is defined by the equation 

f -}- f (e) -F f(~) = 0 (/~e) = _ ~ ,  .fi = %.~:,r (1 ,1 )  

Here  f i  a r e  the fo r ce s  f r o m  the side of the externa l  s t r e s s e s  a k l  acting on a s t ra igh t  line d i s loca -  
t ion of unit length along the di rect ion sj with B u r g e r s  vec to r  b/; the j~(e) a re  the l i nea r  t ens i le  s t rengths  of 
a dis locat ion segment  of length L defined by the d i sp lacement  ~i f rom the equi l ibr ium posi t ion in the ab-  
sence  of ex te rna l  s t r e s s e s .  The quas ie las t ic  coefficient  ~ is  defined by the equation 

n = ~ in L (1.2) 
Y0 

in which /~ is  the shea r  modulus and r 0 ~b  is  the radius  of the dis locat ion kernel .  The in te rac t ion  between 
the dis locat ion and the polar iza t ion  a tmosphe re  f i  (a') is  de te rmined  f rom the equation for  the energy of that  
in te rac t ion  

U(a) C.(a).(a)ae 
~- J ~i~ ~ ~o (1.3) 

where  qik  (a) is  the  s t r e s s  field c rea ted  by  the a tmosphere ;  Uik (d) is  the dislocat ion deformation.  In t eg ra -  
t ion in (1.3) is  ove r  a plane pe rpend icu la r  to the line of dis locat ion excluding a region of radius  r 0 of the 
dis locat ion kernel .  In the case of hel ical  d is locat ion along the th i rd  axis ,  the nonzero  components  of Uik (d) 
a r e  

u(d) b y u(d) b z 
la -~ 43 x2-~y 2 ' ~ : ~ x~+y~ (i,4) 

If we cons ider  a c ry s t a l  with polar iza t ion  a t m o s p h e r e s  about the dislocation as a p a r a - e l a s t i c  medium, 
the s t r e s s  field c rea ted  by the a tmosphe re  in the approximat ion  for  a s tandard l inea r  body can be wr i t ten  

= e uz~ t l .5)  
0 
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Fig. i 

Here  A k i k l m  is the t en so r  defect  of the modules of the medium, and r 
is  the re laxat ion t ime.  F o r  example ,  for  al loys with r ep lacement  on a body-  
centered  cubic la t t ice  bas i s ,  the expansion for  A h i k / m  in the case  of  sho r t -  
r ange -o rde r  re laxat ion has the following form:  

3 

(1.6) 
~=i 

The quantity ~ is defined by the p a r a m e t e r s  of the in te ra tomic  i n t e r ac -  
t ion in the alloy. 

Let  ~(t) denote the dis locat ion d i sp lacement  along the x axis under the 
action of ex te rna l  forces .  Then, using (1.4) and (1.5) and integrat ing in (1.3) 
with r e spec t  to the spat ial  coordinates ,  we obtain an express ion  for  the energy  
of the in teract ion between the dislocat ion and the a tmosphe re  which depends 
on the p rev ious  h i s to ry  of the dislocat ion motion: 

o o  

---6"-~--~ e -  /~A~S +ro ~ 
o 

( a t  = ~ (t)  - ~ (t  - t ' ) )  

dr' 

(1.7) 

where  A~" is  the der iva t ive  of A~ with r e spec t  to t ' .  If  we subst i tute in (1.1) explici t  expres s ions  for  the 
fo rces ,  we obtain an in tegra l  equation for  the dis locat ion motion: 

oo 

�9 ( A ~ * +  r0*)' ( 1 . 8 )  
0 

(6 = h~ b2/6~) 

In what follows we cons ider  per iod ic  solutions of Eq. (1.8) for  the case  of ha rmonic  externa l  s t r e s s e s  

= ~o sin wt. 

F igure  1 shows the region of the ampl i tude- f requency  space inside which we shall  find below var ious  
per iod ic  dis locat ion motions and obtain express ions  for  the in ternal  fr ict ion,  using s impl i f ica t ions  of 

Eq. (1�9149 

2. F o r  smal l  dislocat ion d i sp lacements  ~ << r 0, instead of (1.8) we obtain a l inear  in tegra l  equation: 

oo 

I e-, + ob (2.1) 
0 

Thus,  in th i s  case  re laxa t ion  is independent of the ampli tude of the in ternal  fr ict ion:  

NLb~p.~ (~'~x 
Q-~ = 2~2ro 2 (i q- ~ / Zro ~) i ~- r ~ (2.2) 

Here  N is  the dis locat ion num ber  in unit volume,  and the re laxat ion t ime  is 

v 1 = ~ ( 1  + ~ / ~ r 0  ~) (2.3) 

Equations (2.2) and (2.3) show that  the height of the re laxat ion peak  and the re laxat ion t ime  depend 
on the degree  of binding of the dislocat ion a tmosphere .  For  weakly bound a t m o s p h e r e s  (fl/~ r0 2 << 1) the 
re laxa t ion  t ime  is  ~'l ~ % and the height of the peak  i n c r e a s e s  as the degree  of binding of the dislocat ion 
a tmosphe re  i n c r e a s e s .  In the case  of s t rong binding (fi/~tr02 >> 1) the height of the peak  is  de te rmined  only 
by the  densi ty of the  moving dislocations,  and the re laxa t ion  t ime  T 1 can be much g r e a t e r  than the re laxat ion 

t i m e  T of the medium.  

3. We cons ider  the case  of osci l la t ions  of the dis locat ion segment  with l a rge  ampli tude ~0 >> r0 and 
low frequency w << r0/T~ 0 (region 2 in Fig�9 1). In these  conditions the polar iza t ion  cloud moves  with the d i s -  
locat ions,  which co r r e sponds  to v i s c o - e l a s t i c  dis locat ion motion. Equation (1.8) t akes  the f o r m  
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n~ + r l ~ ' =  ab (*l = ~ / r 0  ~) (3.1) 

w h e r e  ~ is the v i scos i ty .  I n t e rna l  f r ic t ion  is r e l axa t iona l  in na tu r e  : 

NLb~I J, o~'~ ~,['~2~ ~r _ _  -~o~,, (3.2) Q I 
2• --i + ~o~ 

Fig.  2 

I~r. ~ ' 
V',,,. - ~ ~z \J~, 

t j 

Fig.  3 

imat ion  we  

Here  72 is  the  r e l axa t ion  t ime .  

F r o m  the  condi t ion co << r0/7~0 and the  condi t ion  tha t  the  r e l a x a -  
t ion  m a x i m u m  is reached ,  co72 =1, it fo l lows that  the  r e l axa t ion  m a x i -  
m u m  (3.2) can be r e a c h e d  when the  a t m o s p h e r e  is  s t r o n g l y  bound 

(~t~ o << fi/ro). 

W e n o t e t h a t  ana lys i s  of the  expe r imen t a l  r e s u l t s  on Z e n e r  r e -  
laxat ion has  to  take  into account  the  d i s loca t ion  cont r ibu t ion  to in te rna l  
f r ic t ion .  In p a r t i c u l a r ,  th is  is  because  in te rna l  f r i c t ion  is  dependent  
on the  o r ien ta t ion  in mu l t i c ry s t a l l i ne  sol id  r e p l a c e m e n t  solut ions ,  
s ince  the dependences  on o r i en ta t ion  of  the  Z e n e r  and d i s loca t ion  r e -  
laxa t ion  a r e  s ign i f ican t ly  d i f ferent .  

4.  We c o n s i d e r  the  mot ion of  the d i s loca t ion  segmen t  with f r e -  
quency  co < 1 /7  and r 0 << ~0 ( reg ions  2, 3 in Fig.  1). To a good a p p ro x -  

can  a s s u m e  that  the f o r c e  on the d i s loca t ion  moving with ins t an taneous  ve loc i t y  ~ �9 (t) co inc ides  
with the  f o r c e  on a d i s loca t ion  moving u n i f o r m l y  with the s a m e  ve loc i ty .  If we subs t i tu te  A} = ~ ' t '  :in Eq. 
(1.8) and in t eg ra t e ,  we have 

f(~)(~') = --  ~ / ~ ' [ c i  [ r o / ~ ' )  cos (r 0 / ~ ' )  + s i ( r  0 / ~ ' )  sin (r 0 / ~ ' ) ]  (4.1) 

T h e  cu rve  f ( a )  (~.) l e aves  the  o r ig in  and has  a m a x i m u m  ~ f l / 5 r  0 f o r  ~'m ~ 4 r 0 / 7 .  

Inves t iga t ion  of  the a s y m p t o t i c  b e h a v i o r  of (4.1) shows that  

](a) ,.f~. for ~ ' ~ r 0 / ~ ,  /(a) ~ ln~. /~"  for ~ ' ~ r  0 /T  

which  a g r e e s  wi th  the  r e s u l t s  of [2]. Below it is  convenient  to  use  the  equat ion fo r  the  f o r c e  f(a) (~') ob-  
t a ined  in [2] b e c a u s e  of  i ts  s imp l i c i t y  c o m p a r e d  with (4.1). 

T h e  d i s loca t ion  equat ion of mot ion has  the  f o r m  

(4.2) 

We have not  succeeded  in solving th i s  equat ion exact ly .  Hence  we f i r s t  c o n s i d e r  the  c a s e  of  weak  
i n t e r a c t i o n s  be tween  the  d i s loca t ion  and the  a tmosphe re .  In the  l inea r  app rox ima t ion  we obtain  the  fol lowing 
solut ion of Eq. (4.2) in t e r m s  of  the sma l l  nond imens iona l  p a r a m e t e r  f l / ~  o 2 << 1: 

(4.3) 

F r o m  (4.3) we d e t e r m i n e  the in te rna l  f r ic t ion:  

( I - - - - - - I n  t + k - - ~ o  J / ' V . - -  ~o~(o.~ -~ , (4.4) 

Equat ion (4.4) fo r  the  in te rna l  f r i c t ion  as  a funct ion of the f r e q u e n c y  ha s  a m a x i m u m  at which the f r e -  
quency  is  

c~m = rozl / v~ o (4.5) 

and it d imin i shes  as  the  ampl i tude  of the  osc i l l a t ions  i n c r e a s e s .  In (4.5) the d i m e n s i o n l e s s  coeff ic ient  
z 1 ~ 1 is  the  n o n z e r o  solut ion of the equat ion 

2z -- (i + z + ] / t  + z) in 1:/2 (1 + ~ 1 - ~  z ) / :  0 (4.6) 
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The maximum value of the internal f r ic t ion 

Q_~ = 8nNL~ In t + )z~- 
urn0 2 (4.7) 

dec rea se s  as the amplitude of the oscil lat ions increases  and depends weakly on the tempera ture  of the 
specimen.  

We note that the above resul t s  agree qualitatively with the numerica l  computations of [3]. 

In the c a s e w h e n  the a tmosphere  is strongly bound to the dislocation (fi/n~o 2 > 1), the para -e las t i c  be-  
havior  of the medium strongly affects the motion of the dislocation segment.  For  sufficiently large ampli-  
tude ~0 and frequency w periodic motion of the dislocation segment occurs  with breakaway f rom the moving 
a tmosphere  of the elast ic  polar izat ion of the medium. To compute the internal fr ict ion and the conditions 
under which such a phenomenon can ar i se ,  we use a simple approximation for the relat ion between the force 
and the velocity:  

{n~ ', Ir162 ' (4.8) 
l (') (~') = o, I ~,1 > r 

The v iscos i ty  ~/, as in (3.1), is defined by the equation ~/= fiT/r02. The boundary value of the velocity 
~m, defining the interval  in which f ( a ) ( ~  .) is l inear,  is found f rom the condition that the force is given by 
(4.8), the veloci ty  at the maximum force being defined by (4.1). 

The moment of breakaway of the dislocation f rom the a tmosphere  is determined f rom the condition 
that the force on the dislocation f rom the side of the external s t r e s se s  and tension exceeds the maximum 
binding force  of the a tmosphere;  we have 

'ab = u~ ~- ]~ (]~ = ~ / 5ro) (4.9) 

To determine the moment of breakaway t o we consider  the motion of dislocation in accordance with 
Fig. 2, which shows the relation between the displacement ~ and the force  f on the dislocation when there  
is a single breakaway f rom themovL~g'atmosphere.  At t ime t o the dislocation breaks  away f rom the point 
A and reaches  a position defined by the quasielastie tension B. The coordinates of the point B in the f~ 
plane are  

]B : ao bsin coto, (4.10) 
~B = ao bz -1 sin coto 

After  t ime 1- the dislocation moving near  the point B surrounds the polar izat ion atmosphere,and the 
subsequent motion of the dislocation is again limited by the relaxation proper t ies  of the polarization atmo- 
sphere and is subject to condition (4.2). 

Ignoring an interval  of t ime ~ T, which is small  in comparison with the t ime for  the dislocation to 
move to the next breakaway, we find an equation for ~(t) f rom the solution of (1.1) with the approximation 

(4.8): 

~0 (sin cot -- r 2 cos cot) (t) : Ce -~  l ~, -}- l + o ~  
(4.11) 

where C is determined f rom the initial condition (4.10): 

~o~ (cos coto ~- o)vo sin r (4.12) Ce- t~  / *:' - -  1 + o~T2 ~ 

It is easy to ver i fy  f rom (4.11) and (4.12) that ~'(t 0) =0. This corresponds  to the fact that after  dis-  
placement  into a new position the dislocation begins to move again with zero  velocity and the tangent to the 
curve BC at B is paral le l  to the f axis. If we equate the force f rom the side of the external s t r e s ses  and 
the l inear  tension on the dislocation at the maximum force f ro ,  we obtain the condition for breakaway at t ime 
t o + I r / w  in the following form: 
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~o sin COto ,~- C exp ( to r~) ~o (sin (oto - ~o'~ cos ~to) § ~ (4.13) 

The solution of Eq. (4.13) is 

to = 2o) -~ arc tg 0 

( 0 

(v = 1 + o)~'~, % = ~ "-k e7~ l"':') 

(4.14) 

F r o m  the condition that the express ion under the square root sign is positive, we find the lower 
boundary for  the amplitude of the external  s t r e s s e s  (r, for which such osci l lat ions of the dislocation seg-  
ment are  possible:  

6m vV" ~*= ~ Z  ' ~ * n = / ~ / b  (4.15) 

The quantity a ,  is a function of the frequency. At low frequencies COT 2 << 1 the amplitude is ~r, ~ 
Crm/W~-2, while in the case of high frequencies  not exceeding 1/~2 it is ~r, > (rm/2. 

The upper boundary of the s t r e s s e s  under which motion with a single breakaway (in a half-period) of 
the dislocation f rom the a tmosphere  occurs  is determined f rom the condition that the sum of the elast ic  
and tension fo rces  only exceeds f m  once in a half-period.  Otherwise, as the s t r e s s  increases ,  the d i s loca-  
t ion breaks  away a second t ime f rom the a tmosphere .  The internal  fr ict ion is defined as 

_-- _ 2~  2 2~m (sin r + 0~v~ cos (oto) ] (4.16) 

If the external  s t r e s s e s  % < ~ , ,  then 

Q-1 ___ "2z~NLb~g,(a'r (4.17) 
~4V 

As % passes  through the point cr,,the internal  fr ict ion changes discontinuously by an amount 

AQ-~ = 4NLb2~)~X2~ ( i  --  2 ] ~ )  (4.18) 

We see f rom this  that  if ~ < 1/ ' r2 ,  then AQ -1 < 0, while for  w > 1 / z  2 the discontinuity is positive, 
and as the frequency increases ,  AQ -I  --~ 16 N Lb 2 ~ t  -I.  Thus, for sufficiently large f requencies  the internal 
fr ict ion is determined by the force of breakaway f rom the moving polar izat ion atmosphere.  

5. We consider  high-frequency dislocation oscil lat ions in region 4 of Fig. 1. If we expand the exponen- 
t ial  function in the integrand of (1.8) in a se r ies  of powers  of 1 /wr  and retain only two t e r m s  of the expan- 
sion, we obtain 

~b = ~ - ~ A~ + ~o~ + ~ ~ ~ ~ ; ,  
0 0 

(x' = (~t) 

(5.1) 

The second t e r m  in (5.1) is the force  on the dislocation segment f rom the side of the s tat ionary po la r i -  
zation cloud establ ished as a resul t  of the per iodic  motion of the dislocation. The last  t e rm,  which is much 
less  than the second, is the viscous force  on the moving dislocation. 

In the case of a weak a tmosphere  the viscous component plays a fundamental role in the internal 
friction. If we consider  it as a small  perturbation,  we can determine the addition to the z e r o - o r d e r  approxi-  
mation: 

2~ 

---- 3~0 ~ [sin x--sin ( z "  x')] ~'dz' 
~l (t) [ 2 ~ •  .) ~oS[sinx--sin(x--x ')V--k ro ~ (5.2) 

o 
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We have ignored the second t e r m  in (5.1) since in the approximat ion  it makes  no contribution to the 
dis locat ion energy.  Using (5.2), we find the osci l lat ion energy absorbed  in a per iod  and the internal  fr ict ion: 

Q-I 8nNLb21~B �9 Go 
- ~ o ~ . l n - T ; o  (5.3) 

If  the binding between the dis locat ion and the a tmosphe re  is important ,  the s tandard distr ibution of 
the po la r iza t ion  a tmosphe re  has  a significant effect  on the nature of the dis locat ion motion; since the d i s -  
locat ion for  a re la t ive ly  l a rge  pa r t  of the t i m e  moves  nea r  the ex t r eme  posi t ions,  the densi ty of the a tmo-  
sphere  there  is maximal .  The situation may be compl ica ted when the per iodic  dislocat ion motion in the 
potential  field of a d is t r ibuted  a t m o s p h e r e  can b reakaway  f rom the ex t r eme  posi t ions  where  the force  main-  
ta ining the dislocat ion of the po la r iza t ion  a tmosphe re  is maximal .  

We cons ider  the p a r t i c u l a r  case  of motion in which the dislocat ion breaking  away f rom the cloud at 
one of the  e x t r e m e  posi t ions  rapidly  moves  to the opposite ex t r eme .  The conditions for  the exis tence of 
such dislocat ion osci l la t ions a r e  found approx imate ly  assuming  that  the polar iza t ion  a tmosphe re  is fo rmed  
by the  moving dislocation,  which for  the bas ic  par t  of  i ts  t ime  is found in the neighborhood of the e x t r e m e  
posi t ions.  Then Eq. (5.1) can be wr i t t en  

~b=• [ ~ 0 + ~  ~0:-~r0~] (5.4) 

The  contour of the force  field acting on the dis locat ion and the h y s t e r e s i s  loop fo rmed  because  the 
force  f depends on the d i sp lacement  ~ of the dis locat ion for  h igh-f requency osci l la t ions  a re  shown in Fig. 3. 
The  level  of the externa l  s t r e s s e s  at which dislocat ion motion with b reakaway  is  poss ib le  is de te rmined  by 
the re la t ion  b e t w e e n t h e  e x t r e m e  values  f i  and f2 of f (~) :  

f~ < I1 < ~ob (5.5) 

Noting that  ~1 ~ ~o-r0 ,  ~2 ~ ~o -  (fi/2~t)1/2, a f te r  computing f l  and f2,(5"5) can be put in the fo rm 

/ 8b~ ~ (~o ~ ~ / 8b2 -J- ( ~  / 2b2) q` (5.6) 

F o r  s t r e s s e s  ~0 less  than a t  = fi/8b2 the h y s t e r e s i s  loop does not occur.  When the level  a l  is  ex-  
ceeded, all  the dis locat ion loops, except  the sma l l e s t ,  which col lapse under  s t r e s s e s  ~ cr 1 at a distance 
~ r 0, move with b reakaway  at the points �9 ~1. If then ~0 i nc r ea se s ,  the longest  dislocat ion segments  cease  
to move with a b reakaway  since for  t hem the polar iza t ion  a tmosphe re  becomes  more  homogeneous and the 
fo rce  field becom es  smoother .  Hence the in terna l  fr ict ion must  d e c r e a s e  as a0 i n c r e a s e s ,  the ra te  of de-  
c r e a s e  being de te rmined  by the dis tr ibut ion of the dis locat ion segments  in length. 
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